
http://www.geneca.com/

The Introduction . 02

Finding 1: Out of Sync Stakeholders 05

Finding 2: Unclaimed Accountability 09

Finding 3: Unclear Requirements 13

Finding 4: Inconsistent Involvement 17

Finding 5: Rework & Scope Creep 21

The Conclusion . 25

A software project is a balance between business and IT. Each
team needs the other in order to deliver an on-task, on-time,
on-budget product. From the very beginning, the teams need to
have shared ownership with each one understanding they are
essential to success.

Although it is true that the IT team will log in more hours in the
project, their success is measured by the business. They need
the business team to participate fully. A common complaint of
IT teams is never having enough of the business leaders’ time.

On the other hand, the business team members have full time
jobs outside of helping with the software project. Whether they
are in sales, marketing, customer service, or another division,
they have plenty of work to do every day. A common complaint
of business teams is not having enough time to help IT do their
jobs appropriately.

How can these two different viewpoints come together for
success? By building on knowledge gained from research into
projects that failed and best practices utilized by companies
who have built large numbers of software products, leaders can
take practical steps toward success.

Read on for 5 key research findings and 10 recommendations to
help you achieve success in your next software project.

Geneca surveyed approximately 600 U.S. business and IT

executives and practitioners as part of ongoing research on

why teams struggle to meet the business expectations for

their projects. Responses revealed 5 key findings that lead

to failed software projects.

Participants represented a range of industries with 33% in

finance/insurance/healthcare, 29% in

manufacturing/industrial goods, and 23% in

technology/professional services. 34% of respondents

work at companied with less than 500 employees, 50%

with 500-5,000 employees, and 16% over 5,000 employees.

Most of the participants work for companies with revenues

between $100 million and $1 billion (67%).

All research was directed by an independent research firm. Data reports

are available upon request. Please contact operations@Geneca.com.

lthough research on the high percentage of software
project failures is not new, this study focused on

discovering when and why individuals believe the failures
occur.

Many responses reflect a positive attitude to projects while
articulating key pain points related to project execution.
Interestingly, responses from IT professionals and business
counterpoints are fairly similar throughout, revealing many of
the same issues and concerns with regard to their projects.

The overall perception is that challenges start at the very
beginning of a project and increase as the project
progresses.

By understanding the root causes of the uncertainty about
success, leaders can implement a few simple, but powerful,
changes to help teams anticipate and overcome roadblocks.

Although research on the high percentage of software project failures is not new,

this study focused on discovering when and why individuals believe the failures

occur.

Many responses reflect a positive attitude to projects while articulating key pain

points related to project execution. Interestingly, responses from IT professionals

and business counterpoints are fairly similar throughout revealing many of the

same issues and concerns with regard to their projects.

Finding

43% Responded that there is confusion around
what the business is asking for in the project

oftware projects need to begin with a shared vision
between the business team and the IT team. The

business understands why the software needs to be built
and the IT team understands how it should be built. If the
two teams are out of sync, the when and how will be greatly
impacted and result in project failures.

31%
Identify lack of a common vision on project
success criteria as the greatest barrier to
success in project completion

Perhaps the most concerning response is the huge
percentage who believe the teams are rarely in sync. If the
project becomes us vs them, failure truly is inevitable.
These responses indicate that projects begin to fail before
they have even started; however, you can take several
simple steps to start for success.

In order to forge a project team where business and IT work
collaboratively and in alignment, you will need to clearly
articulate goals and examine team language choices.

78% State that the business and IT teams are
always or usually out of sync with each other

o prevent feeling of out of sync throughout your
software project, take a few minutes at the start of your

project to create a common vision through clearly articulated
goals. This does not mean you need to have every detail
explained, but a quarterback needs to know where the receiver
will be before they get there.

However, you don’t need to distribute your business plan as
required reading for all team members. Often, that level of
information would lose meaning with people that aren’t
performing that part of the plan. Show them what they need to
own and the pieces they are connected to prior to the start of
the project and craft a list of a few topline goals for why what
they are doing is important. They can start with “we are
building this software to . . .” or “we are adding 3 features to our
product in order to x, y, and z.”

Keep the wording clear and simple. Write out the major goals
and post them in a central location. As leaders of the project,
you need to use these goals both to maintain a common vision
and to reduce confusion. Constructive debate will happen
throughout the project as team members make suggestions and
work toward those goals.

When team members make individual contributions to those
goals, they will use these goals to verify they are in line with the
bigger vision. Taking an extra few minutes to ask, “Does this
help us reach our goal?” can save rework time later, help keep
the project on plan, and get the best thinking and efforts of
everyone involved.

n old adage states we should “say what we mean and mean
what we say”. This holds true for software projects, but it is

not always easy. Language is not very good at explaining concepts.

Life experience shapes how we perceive the world and that
perception alters our interpretation of various words. When two
people look at a color and say its name, that answer will depend on
how deep their past is related to colors as well as how their eyes
and brain function at color perception. Your project has many of
the same challenges.

1. Shared Words. Because words can have various meanings,
make sure you take nothing for granted. Your version of red
may be maroon to me. Consider creating a glossary of words
and their definitions that include both commonly used
business and technology words as they relate to this project.

2. Templates. Commitments in a software project need to be
measurable and actionable. Saying you are “working on it
today” does not produce an outcome but rather informs the
receiver of how you are spending your time. In a project, what
is important is when you will have that complete. Create
wording templates for more exact phrasing like, “I will have
that complete by stand-up tomorrow morning.” Help your
team provide the data that is necessary, not merely
informational.

Given the heavily collaborative nature of software development,
failures in communication are most often the cause of derailment
of a project. It is faster and more cost effective to ask twice and
code once rather than let failures in communication result in code
rework.

Although research on the high percentage of software project failures is not new,

this study focused on discovering when and why individuals believe the failures

occur.

Many responses reflect a positive attitude to projects while articulating key pain

points related to project execution. Interestingly, responses from IT professionals

and business counterpoints are fairly similar throughout revealing many of the

same issues and concerns with regard to their projects.

Finding

38%
Identify confusion around team roles and
responsibilities to be the greatest barrier to
delivering successful software

ho is responsible for the software project? The
answer needs to be “all of us.” The IT team should

never build software for the business, but instead with the
business. With a variety of cooks in the kitchen, setting up
roles, responsibilities, expectations, and accountability
becomes a necessity, not a luxury.

30%
Identify a lack of clarity around team roles and
accountabilities to be the greatest frustration
during a software project

24% Believe that stakeholders do not align in
staffing, budget, time, and progress tracking

By identifying responsibility both as a barrier and a
frustration, responses indicate the unsettling nature of
confusion. People want to do good work and, to do so,
need to have clarity in roles and responsibility.

To create a project team with clear accountability, you
need to create a cohesive plan and foster a culture of
ownership among every member of the team.

he nature of successful business requires planning. In
fact, it is often said that the difference between a wish

and a goal is a plan. Usually, the problem within a software
project is not that there is no plan, but that there are too many
plans. Marketing, sales, finance, customer service, and IT will all
craft plans related to the software project.

Each plan will have intersection points and dependencies on
the others but, all too often, these are not shared and
communicated. Handoffs from one team to another will fail and
the project will be negatively impacted. The bigger the build or
the bigger the business, the more dependencies and handoffs
there will be. In order to create and maintain order with so
many moving parts, you will need a master plan.

You need two things to make this work.

1. A single person responsible for everything coming
together. This is the person that pushes obstacles out of
the way and makes sure the work meets at the right place
down the road.

2. While every group needs a plan for the work they are doing,
there needs to be visibility into how all the pieces fit
together. Use this to let each group know who is the
consumer or their work and who they need work from.
Focus time on meeting the commitments to produce those
connection points.

The master plan will need to be reviewed, updated, and shared
regularly throughout the lifecycle of the project.

ost often people are given a project but never really make
it their own. It is so tough to make things happen when

the people doing the work don’t care. Team members need to
feel the purpose, the goal, and the pride of success. They need
a common enemy to rally against whether that is a completion
date or a technical challenge. In all cases, if the people
involved don’t care about the project, it will fail.

How do you foster that ownership? The kind of passion and
focus you need never comes from someone just doing their job,
it comes from people caring about what they are doing and
believing in why they are doing it. It is the difference between a
job and a career, a supervisor and a leader, a failure and a
success.

The challenge here is getting the team to gel together and rally
against the goal. Avoid making yourself as the leader the bad
guy to encourage the team to band against as that will not bode
well for the long term. Instead, be in the game with them.

Take the project goals and the project deadline and say, “we
need to get from here to there by then” and make the plan
together. You will need to let them see you hard at work to
make it happen. If they perceive they are putting in much more
effort than you are, they won’t follow you into battle, they will
just watch you go.

Although research on the high percentage of software project failures is not new,

this study focused on discovering when and why individuals believe the failures

occur.

Many responses reflect a positive attitude to projects while articulating key pain

points related to project execution. Interestingly, responses from IT professionals

and business counterpoints are fairly similar throughout revealing many of the

same issues and concerns with regard to their projects.

Finding

57% State issues with requirements will result in a
project not being considered an overall success

hen asked to define requirements, less than 20% of
team members—business or IT—selected

“articulation of business need” as the purpose of the
requirements process. If the needs of the business are not
at the center of the requirements process, how will the final
product be what the business needs?

70%
Of respondents believe that requirement issues
will result in a project that is over budget or
fails to deliver the desired capabilities

61% Relate poor requirements to the project taking
longer than the estimated time to complete

Of all the findings, unclear requirements can be most easily
tied to project failure. Requirements most often take the
blame for where the project went off track, providing
strong insight into problems lurking in the software
development process.

For a software project to be successful, the requirements
need to be broad enough to road map the business need
but detailed enough to allow the development team to
code.

n the current agile world of software, gone are the days of
creating all the requirements before a project starts. Gone,

too, should be the extensive requirement documents with
hundreds of pages of text. Why?

Because the purpose of requirement documents is to clearly state
what the business needs the software to do and how it should do
it in a way that the development team can build it. Long, tedious
documents filled with technical jargon tend to be signed off by
business folks who do not read the document as it is too difficult
to comprehend. They default to believing it must be correct since
they told IT what they wanted, and the document should be the
translation of that need.

On the flip side, the developers don’t want to read all that either
so most will flip through them, look at a few pictures, and then
start coding. The problem gets worse with more experienced
developers who will fill in much more of the information without
reading it. Unfortunately, their attempt at efficiency can result in
wrong functionality.

What does that leave us with? Two teams—business and
development—with one thing in common: unread requirements.
Instead, create bite-sized requirements that are easy to consume
by both business and IT. Combine functionality into a scenario or
story that makes sense to all and write the requirements using
clear language shared by both tech and business. Using the
established common language will allow you to spend your time
on building, instead of rationalizing or defending.

roject visuals are an important part of the requirements
process. They start with sketches on whiteboards or with

pencil and paper. These sketches become the wireframes the IT
team will need to begin writing the code.

Unfortunately, while IT teams are used to working with low-
fidelity mockups or wireframes, most people are not. Without
significant experience creating software products, it is difficult
to look at a sketch and be able to visualize the end product. In
order to see what their product will look like, business members
need a better visual. Whether you choose to create a few high-
fidelity images or stub out the actual application, you will want
to showcase several strong visuals to your business team early.

By presenting stronger visuals in the beginning of the project,
you have the opportunity to work together to make any changes
before you build, and then need to rebuild, your pages. You will
save considerable time and frustration by taking extra care at
the start of the design.

Otherwise, you run the risk of a system that doesn’t match what
was intended and isn’t discovered until the business begins user
acceptance testing and can look at the results of what they
asked for. You do not want the real design and requirements to
begin at testing when the business is forced to choose between
what they thought they asked for and what they received and
must decide whether they pay for more work or subjugate their
vision. Even if the team must deliver for no additional cost, you
will still lose either on time or on expectation.

Although research on the high percentage of software project failures is not new,

this study focused on discovering when and why individuals believe the failures

occur.

Many responses reflect a positive attitude to projects while articulating key pain

points related to project execution. Interestingly, responses from IT professionals

and business counterpoints are fairly similar throughout revealing many of the

same issues and concerns with regard to their projects.

Finding

25% State the business does not remain engaged
in the project or leaves the process to IT

any organizations consider technology projects to be
exclusively an IT responsibility rather than a joint

responsibility with business. As a result, business
involvement in the project often decreases with time. As
their participation decreases, project failure increases and
the predictability of success diminishes.

Surprises occur when people are not involved throughout
the project. By participating as the project evolves, the
business team maintains the visibility needed to avoid
being surprised. Instead, they provide feedback and make
informed choices contributing to project success.

Consistent involvement prevents making reactive decisions
through false urgency and provides proactive ways to make
the plan become a successful reality.

70% Believe their CEO would rate the ability to
deliver software projects without surprises as
most important

42% Responded that IT does not build what the
business asks for

rgency can be thought of as artificial importance. It is
important for my health (both physically and mentally)

for people to eat. Delaying eating or downgrading the
importance of eating lunch to below the importance of finishing
a task happens. However, at some point, the body will insist
eating become urgent and will no longer allow it to be
downgraded.

Unfortunately, that urgency doesn’t usually cause the best
decisions or the best results. When urgently hungry, people
make poor choices as to what to eat. Grabbing a candy bar to
reduce urgent hunger back to important hunger is not the
healthiest option for the person’s system.

Projects are exactly like that. When important items are allowed
to become urgent, poor decisions are made in the name of
immediacy that will lead to project delays and failures. Urgency
is ultimately a function of organization, prioritization, and
discipline more than anything.

Knowing all the things we need to do and how they relate to the
things around them allows us to rank their importance,
determine priority, and schedule when they should be
performed. Having the discipline to complete items in the
agreed upon order is a challenge for people. All too often, we
will choose to complete easier or more fun items before
returning to more difficult tasks. This can lead to the most
challenging tasks being connected to the poor urgently made
decisions. Create visibility and commitment around items to
ensure they never advance to artificially urgent.

here is a difference between the people that have success
consistently and those who do not. The difference is

leadership. Watching a project does not make it happen. Taking
action makes it happen.

“The best laid plans of mice and men often go awry.”

That quote from Robert Burns is so true in the world of
software. We work so hard to decompose all the work that
needs to be done. We estimate it out by getting input from
multiple people and tuning our estimates based on past results.
We put together a team that has exceptional skills. We give
them all the support we can rally. We use the Agile tenants to
drive our project. Yet, projects still go off-the-rails.

The reason? You cannot watch things to happen. What I mean
here is that the act of watching does not make the outcome
true. While many things do get better simply by measuring them
and creating visibility, that is a temporary condition. Systems
(and teams) always revert to their innate behavior.

To combat this we need to “make the plan come true.” What I
mean here is that a plan is just that, a PLAN. I would offer that
many project “plans” are more the wishes of the people
creating it. A real plan knows what it is trying to accomplish
every step of the way. It is not a dream or an end state. It is
something we can measure against and most importantly, make
adjustments when we aren’t seeing the results we expect.

Although research on the high percentage of software project failures is not new,

this study focused on discovering when and why individuals believe the failures

occur.

Many responses reflect a positive attitude to projects while articulating key pain

points related to project execution. Interestingly, responses from IT professionals

and business counterpoints are fairly similar throughout revealing many of the

same issues and concerns with regard to their projects.

Finding

80% Admit that at least half of their time is
consumed by rework

23%
Feel business and IT always agree on when a
project is fully completed

he resigned acceptance by developers that a
majority of their time will be spent in rework could be

the biggest indicator that projects are not set up to succeed
from the start. Without a clear and shared vision, it is
inevitable that developers will need to build and rebuild
which increases the project budget and extends the
timeline.

46%
State they are unsure of the details the
business needs them to achieve with their
project

For a project to end on-time, on-task, and on-budget,
rework needs to be minimized. To prevent rework, all team
members need to understand the main causes of scope
creep and rework and have strategies to avoid causing the
extra work.

Strategies include providing access and openness for the
types of communication that will prevent members from
making individual decisions that conflict with the best
choices for the success of the project.

hat is scope creep? When decisions made by any member
of the project team add extra work to the project, the

scope increases or creeps. Sometimes the simplest decision
can increase scope and derail a project.

Let’s look at an example. On a project, a developer thought
having icons wiggle side to side when the mouse hovers over
them would be a good addition. It was not in the requirements
to have a wiggle, but it was also not in the requirements to not
wiggle. The developer took 15 minutes to add the wiggle
functionality. It worked, so the quality analyst sent it on to the
business for user acceptance testing. When the business team
member tested the page, they were surprised to find a wiggle
and did not like it. The next meeting included a discussion of
the wiggle and it was decided to remove the wiggle. The code
went back to the developer and it was removed. It was then
retested by quality and business.

The original 15 minutes of work ultimately added 4 hours of
work to the project. If the developer had taken 5 minutes to ask
if the business would like the wiggle added, the scope would
not have increased and the developer would not have ended up
recoding the page. During a project, hundreds of decisions are
made opening the potential for good intentioned choices to
increase scope and cause rework.

Teams with a strong culture of communication and consistent
business involvement will have less “wiggles” in the project.
Create a team norm of ask before you act to keep your project
on the road to success.

he majority of people believe that IT and business both
begin and end out of sync. Much of the inability to align

on completion surrounds the understanding of bugs. A bug is
any flaw in a software system, but who decides if it is a true flaw
or a choice?

Most IT teams define bugs as critical, high, medium, and low
with the level tied to the coding effort it will take to fix the bug.
An item that will impact the entire system stopping it from
working correctly will be a critical where a typo will be a low.

Business teams define issues by how they impact the customer
or user. Agreement that an item that stops the system from
working is critical is easy to accept; however, typos are rarely
low to a business member. They may be easy to fix, but they are
embarrassing to the business.

There will be a set of bugs that are a matter of choice. For
example, if the user hits save and the page saves and takes the
user to a dashboard page, this was a business choice made in
requirements. If during testing, business decides they would
rather have the user directed to another page, it would be
logged in as a bug that could be low to high depending on the
amount of occurrences and the effort.

Bugs that do not stop functionality need to be decided on very
intentionally. Where the business may want the page change if
it is 15 minutes of effort, they may not want to spend 4 hours on
the change at this time. Teams with agreement on bug
classifications will be likely to agree a project is truly done.

lthough most projects are considered by those surveyed
to be doomed from the start that does not need to be

the reality. By examining the 5 key findings closely looking for
interconnected issues and opportunities for change, leaders
can set up software projects with a collaborative view of
success moving forward.

Take a hard look at your software development process and
determine how you will facilitate changes to:

▪ Align your stakeholders from the start

▪ Articulate accountability, roles, and responsibilities

▪ Define requirements that are readable and actionable

▪ Establish practices for easy and continuous involvement

▪ Increase visibility and communication to reduce rework and
scope creep

Acknowledge and validate the uncertainty felt by team
members at the start of the project and openly commit to using
these 10 success strategies to avoid repeating the problems of
past projects. You can get your team to feel optimism and
confidence about the next project.

Utilizing these 10 strategies for success, Geneca’s success rate
for software projects delivered on-target, on time, and on-
budget is 97%. We continue to investigate issues on every
project, determine cause and effect, and advance our practices.
We can deliver your next project successfully or can help arm
your team with the best practices to make project success a
standard in your organization.

If you would like help ensuring success on your next software
project, we can help. Contact Geneca for a free consultation
today. We would love to discuss your company’s needs and

answer any questions you have so we can get you on the path
to completing your project successfully.

CONTACT US

http://www.geneca.com/
mailto:sales@geneca.com

